ENEDIAMINES ACYLEES

SYNTHESE ET ACTION DES REACTIFS DE GRIGNARD

Pierre Duhamel, Lucette Duhamel et Victor Truxillo

Laboratoire de Chimie Organique de la Faculté des Sciences et des Techniques de Rouen

76130 - Mont-Saint-Aignan, France

(Received in France 17 October 1973; received in UK for publication 23 November 1973)

Les ènediamines acylées, $R-CO-C(NR_2^1)=CH-NR_2^1$ 3 , sont des composés peu connus (1). Il a déjà été montré au Laboratoire que l'acylation directe des diamino-1,2 éthylènes par les cétènes ou les halogénures d'acides conduisait, soit à une ènediamine C-acylée 3 , soit à une énamine aminocétone, $R_2^1N-CH_2-CO-C-CH-NR_2^1$, ou au mélange des deux (1c).

Nous avons mis au point une méthode qui permet d'obtenir ces composés de façon univoque, avec de bons rendements. Elle consiste à faire agir des amines secondaires sur les β -céto-acétals α -halogénés α . Si le milieu réactionnel est chauffé pendant un temps très court, on peut isoler les α -cétoacétals α -aminés α -aminés α -cetoacétals α -

$$\begin{array}{c} O \\ R-C-CH-CH \\ B_r \\ O CH_3 \\ O$$

TABLEAU I (8)

O-AMINO B-CETOACETALS

		_			R M N			
R	NR'	Eb°C/mmHg	Rdt %	IR cm-1 Ha		Нъ	J _{ab}	Solvant
* _{CH} 3	NC5 ^H 10	94-103/0,6	74	1720	4,60 (d)	3, 15	8	CC1 ₄
CH ³	nc ₄ h ₈ o	110-115/0,7	71	1720	4,65 (d)	1	7,6	CDC13
C6H5	NC5 ^H 10	130-135/0,5	78	1675	4,95 (d)	4,20	8,3	"
С ₆ н ₅	NC ₄ H ₈ O	135-138/0,5	71	1670	4,95 (d)	4,20	8,8	11
<u></u>	<u> </u>	L			\ •==	····	<u> </u>	<u> </u>

^{*} Déjà décrit (2).

Les ènediamines acylées 3 sont également accessibles par amination des eta-cétoaldéhydes Q-bromés, R-CO-CHBr-CHO, mais les rendements sont moins bons, en raison de la formation de produits de coupure (3, 4).

TABLEAU II (8)

ENEDIAMINES ACYLEES

R	NR2	Eb°C/mmHg ou (F°C)	Rdt %	I R	RMN (CDC1 ₃) = C-H
сн ₃ сн ₃ с ₆ н ₅	NC ₅ H ₁₀ NC ₄ H ₈ 0 NC ₅ H ₁₀ NC ₅ H ₁₀ NC ₄ H ₈ 0	135-8/0,5 (80-82) 140-5/0,5 (135-6) (110) (140-2)	74 [*] 60 [*] 83 ^{**} 85 ^{**}	1575	6,9 (s) 6,85 (s) 6,5 (s) 6,5 (s)

^{*} Calculé par rapport à 2 ** Calculé par rapport à 1

Nous exposons ci-après les résultats obtenus par action des réactifs de Grignard sur les ènediamines acylées 3. Cette réaction est comparable à celle observée pour les composés \(\beta\)-énaminocarbonylés (5); elle illustre l'importance des composés 3 comme intermédiaires de synthèse, puisqu'elle constitue une nouvelle voie d'accès préparative aux \(\mathcal{C}\)-dicétones 5.

Le choix des conditions d'hydrolyse permet d'isoler, à volonté, les \(\alpha\)-énaminocétones 4 (tableau III), si on utilise une solution aqueuse saturée de chlorure d'ammonium à froid, ou les \(\alpha\)-dicétones 5 (tableau IV), si on opère en présence d'une solution aqueuse de chlorure d'hydrogène.

$$R - C - C - C - H \xrightarrow{R^{1}MgX}_{(2)} R - C - C - C - CH - R'' \xrightarrow{H_{3}^{0},C1}_{(2)} R - C - C - CH_{2} - R''$$

$$O \quad NR_{2} \quad NR_{2} \quad NR_{2} \quad NR_{2}^{1} \quad O \quad NR_{2}^{1}$$

$$3$$

$$4$$

$$5$$

TABLEAU III (8)

OL ENAMINOCETONES

R	R"	Eb°C/mmHg	Rdt %	IR cm ⁻¹	RMN (CDC1 ₃) —C—H
сн3	снз	65-68/0,8	88	1665	6 , 20 (q)
CH ₃	с ₆ н ₅	135-138/0,8	90	1670	6,60 (s)
сн3	сн ₂ -с ₆ н ₅	132-135/0,4	67	1685	6,20 (t)
с ₆ н ₅	сн ₃	130/0,8	89	1665	5,60 (q)
с ₆ н ₅	с ₂ н ₅	130-132/0,5	78	1680	4,75 (t)
с ₆ н ₅	с ₆ н ₅	190/1	65	1650 1660	6,05 (s)

Des énaminocétones 4 et α -dicétones 5 ont déjà été obtenues par bromuration suivie d'amination de cétones α,β -éthyléniques (6). La méthode que nous proposons permet, à partir d'une ènediamine acylée 3 , d'obtenir toute une gamme de composés 4 et 5 , en faisant varier

uniquement la nature du réactif de Grignard. De ce point de vue, elle est à rapprocher de la méthode de T. Cuvigny et H. Normant (7).

TAB	LEAU	ΙV	(8)

C-DICETONES

5 R---CO---CO---CH₂---R''

R	R"	Eb°C/mmHg	Rdt %	IR cm ⁻¹	RMN (CDC1 ₃) CO—CH ₂ —
сн ₃	с ₆ н ₅	85-88/1	86	1715 1665	4,00 (s) *
CH3	СН ₂ -С ₆ Н ₅	85-88/0,3	80	1720	2,85 (m)
с ₆ н ₅	СНЗ	98/0,8	86	1715 1670	2,90 (q)
^C 6 ^H 5	с ₂ н ₅	85/0,4	83	1715 1680	2,80 (t)

* La R M N indique la présence de 80 % d'énol CH3-CO-COH)=CH-C6H5.

NOTES

- (1) a H. BREDERECK, G. SIMCHEN, G. KAPAUM et R. WAHL, Chem. Ber. 1970, 103, 2980.
 - b H. BÖHME et R. BRAUN, Liebigs Ann. Chem. 1971, 744, 27.
 - c G. PLÉ, Thèse ès Sciences Physiques, Rouen 1972, et Tetrahedron Letters 1973, (ce numéro).
 - d R. REICHARDT et K. SCHAGERER, Angew. Chem. 1973, 346.
 - e Z. ARNOLD, Czechoslovak Acad. of Sci., Chem. Comm. 1973, 38, 1168.
- (2) F.D. MILLS, B.G. BAKER et J.E. HODGE, Carbohydr. Res. 1970, 15, 205.
- (3) L. DUHAMEL, P. DUHAMEL et V. TRUXILLO, C. R. Acad. Sci. 1972, 275C, 225.
- (4) V. TRUXILLO, résultats inédits.
- (5) a N.K. KOCHETCHOV, Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk 1954, 47, (cf. C A 1955, 49, 6090i).
 - b C. JUTZ, Chem. Ber. 1958, 91, 1867.
 - c J. FICINI et H. NORMANT, Bull.Soc.Chim.Fr. 1964, 1294.
- (6) C. DUFRAISSE et H. MOUREU, Bull.Soc.Chim.Fr. 1927, 41, 1370.
- (7) T. CUVIGNY et H. NORMANT, C.R.Acad.Sci. 1953, 815.
- (8) RMN: R 12 Perkin Elmer, 60 Mcycles, Sppm, référence interne TMS, J cps.
 - IR : Infracord 237 Perkin Elmer, film (ou nujol pour les solides).
 - F : Banc Köfler; les points de fusion sont donnés à titre indicatif.